मराठी

If Rth Term is the Middle Term in the Expansion of ( X 2 − 1 2 X ) 20 Then ( R + 3 ) T H Term Is(A) 20 C 14 ( X 2 14 ) (B) 20 C 12 X 2 2 − 12 (C) − T 20 C 7 X , 2 − 13 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

पर्याय

  •  \[^{20}{}{C}_{14} \left( \frac{x}{2^{14}} \right)\]

     

  •   \[^{20}{}{C}_{12} x^2 2^{- 12}\]

     

  • \[- ^t{20}{}{C}_7 x, 2^{- 13}\]

     

  •  none of these

     
MCQ

उत्तर

 \[- ^t{20}{}{C}_7 x, 2^{- 13}\]
Here n is even
So, The middle term in the given expansion is
\[\left( \frac{20}{2} + 1 \right)\text{ th = 11th term} \] 
Therefore, (r + 3)th term is the 14th term.
\[T_{14} = ^{20}{}{C}_{13} ( x^2 )^{20 - 13} \left( \frac{- 1}{2x} \right)^{13} \]
`= \left( - 1 \right)^{13} "^20C_{13} \frac{x^{14 - 13}}{2^{13}}`
\[ = - ^{20}{}{C}_7 x 2^{- 13}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.4 | Q 30 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of x5 in (x + 3)8


Find the coefficient of a5b7 in (a – 2b)12


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×