Advertisements
Advertisements
प्रश्न
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
उत्तर
\[\left( 1 + x \right)^{2n - 1} \]
\[\text{ Here, n is an odd number .} \]
\[\text{ Therefore, the middle terms are } \left( \frac{2n - 1 + 1}{2} \right)^{th} \text{ and } \left( \frac{2n - 1 + 1}{2} + 1 \right)^{th} , i . e . , n^{th} \text{ and } (n + 1 )^{th} \text{ terms } . \]
\[\text{ Now, we have} \]
\[ T_n = T_{n - 1 + 1} \]
\[ =^{2n - 1}{}{C}_{n - 1} \left( x \right)^{n - 1} \]
\[\text{ And } , \]
\[ T_{n + 1} = T_{n + 1} \]
\[ = ^{2n - 1}{}{C}_n \left( x \right)^n \]
\[ \therefore \text{ the coefficients of two middle terms are } ^{2n - 1}{}{C}_{n - 1} \text{ and } ^{2n - 1}{}{C}_n . \]
\[Now, \]
\[^{2n - 1} C_{n - 1} +^{2n - 1} C_n =^{2n} C_n\]
Hence, the sum of the coefficients of two middle terms in the binomial expansion of
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The last two digits of the numbers 3400 are 01.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.