मराठी

The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

The given expression is (1 + x)2n–1 

Number of terms = 2n – 1 + 1 = 2n  ....(Even)

∴ Middle terms are `(2"n")/2` th term and `((2"n")/2 + 1)^"th"` terms

= nth terms and (n + 1)th terms

Coefficient of nth term = 2n–1Cn–1

And he coefficient of (n + 1)th term = 2n–1Cn

Sum of the coefficients = `""(2n + 1)C_(n - 1) + ""^(2n - 1)C_n`

= `""^(2n - 1)C_(n - 1) + ""^(2n - 1)C_n`

= `""^(2n - 1 + 1)C_n`

= 2nCn 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 37 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 4th term in the expansion of (x – 2y)12 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


The number of terms in the expansion of [(2x + y3)4]7 is 8.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×