Advertisements
Advertisements
प्रश्न
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
उत्तर
\[\text{ Given }: \] \[(1 + x )^{2n} \]
\[\text{ Thus, we have: } \]
\[ T_2 = T_{1 + 1} \]
\[ = ^{2n}{}{C}_1 x^1 \]
\[ T_3 = T_{2 + 1} \]
\[ = ^{2n}{}{C}_2 x^2 \]
\[ T_4 = T_{3 + 1} \]
\[ = ^{2n}{}{C}_3 x^3 \]
\[\text{ We have coefficients of the 2nd, 3rd and 4th terms in AP } . \]
\[ \therefore 2\left( ^{2n}{}{C}_2 \right) = ^t{2n}{}{C}_1 + ^{2n}{}{C}_3 \]
\[ \Rightarrow 2 = \frac{^{2n}{}{C}_1}{^{2n}{}{C}_2} + \frac{^{2n}{}{C}_3}{^{2n}{}{C}_2} \]
\[ \Rightarrow 2 = \frac{2}{2n - 1} + \frac{2n - 2}{3}\]
\[ \Rightarrow 12n - 6 = 6 + 4 n^2 - 4n - 2n + 2\]
\[ \Rightarrow 4 n^2 - 18n + 14 = 0\]
\[ \Rightarrow 2 n^2 - 9n + 7 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
The last two digits of the numbers 3400 are 01.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.