मराठी

In the Expansion of (1 + X)N the Binomial Coefficients of Three Consecutive Terms Are Respectively 220, 495 and 792, Find the Value of N. - Mathematics

Advertisements
Advertisements

प्रश्न

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.

उत्तर

\[\text{ Suppose the three consecutive terms are } T_{r - 1} , T_r \text{ and } T_{r + 1} . \]

\[\text{ Coefficients of these terms are } ^{n}{}{C}_{r - 2} , ^{n}{}{C}_{r - 1} \text{ and } ^{n}{}{C}_r , respectively . \]

\[\text{ These coefficients are equal to 220, 495 and 792 } . \]

\[ \therefore \frac{^{n}{}{C}_{r - 2}}{^{n}{}{C}_{r - 1}} = \frac{220}{495}\]

\[ \Rightarrow \frac{r - 1}{n - r + 2} = \frac{4}{9}\]

\[ \Rightarrow 9r - 9 = 4n - 4r + 8\]

\[ \Rightarrow 4n + 17 = 13r . . . \left( 1 \right)\]

\[\text{ Also } , \]

\[\frac{^ {n}{}{C}_r}{^ {n}{}{C}_{r - 1}} = \frac{792}{495}\]

\[ \Rightarrow \frac{n - r + 1}{r} = \frac{8}{5}\]

\[ \Rightarrow 5n - 5r + 5 = 8r\]

\[ \Rightarrow 5n + 5 = 13r\]

\[ \Rightarrow 5n + 5 = 4n + 17 \left[ \text{ From Eqn} \left( 1 \right) \right]\]

\[ \Rightarrow n = 12\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 27 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of a5b7 in (a – 2b)12


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Middle term in the expansion of (a3 + ba)28 is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×