हिंदी

If in the Expansion of (A + B)N and (A + B)N + 3, the Ratio of the Coefficients of Second and Third Terms, and Third and Fourth Terms Respectively Are Equal, Then N is (A) 3 (B) 4 (C) 5 (D) 6 - Mathematics

Advertisements
Advertisements

प्रश्न

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is

विकल्प

  • 3

  • 4

  •  5

  • 6

     
MCQ

उत्तर

n = 5

\[\text{ Coefficients of the 2nd and 3rd terms in } (a + b )^n \text{ are } ^{n}{}{C}_1 \text{ and }  ^{n}{}{C}_2 \]

\[\text{ Coefficients of the 3rd and 4th terms in } (a + b )^{n + 3} \text{ are } ^{n + 3}{}{C}_2 \text{ and  }^{n + 3}{}{C}_3 \]

\[\text{ Thus, we have} \]

\[\frac{^{n}{}{C}_1}{^{n}{}{C}_2} = \frac{^{n + 3}{}{C}_2}{^{n + 3}{}{C}_3}\]

\[ \Rightarrow \frac{2}{n - 1} = \frac{3}{n + 1}\]

\[ \Rightarrow 2n + 2 = 3n - 3\]

\[ \Rightarrow n = 5\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.4 | Q 4 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


Middle term in the expansion of (a3 + ba)28 is ______.


The last two digits of the numbers 3400 are 01.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×