हिंदी

If in the Expansion of ( X 4 − 1 X 3 ) 15 , X − 17 Occurs in Rth Term, Then (A) R = 10 (B) R = 11 (C) R = 12 (D) R = 13 - Mathematics

Advertisements
Advertisements

प्रश्न

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

विकल्प

  •  r = 10

  •  r = 11

  •  r = 12

  • r = 13

     
MCQ

उत्तर

r = 12

Here,

\[T_r =^{15}{}{C}_{r - 1} ( x^4 )^{15 - r + 1} \left( \frac{- 1}{x^3} \right)^{r - 1} \]

\[ = ( - 1 )^r \times^{15}{}{C}_{r - 1} x^{64 - 4r - 3r + 3} \]

\[\text{ For this term to contain } x^{- 17} , \text{ we must have:}  \]

\[67 - 7r = - 17\]

\[ \Rightarrow r = 12\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.4 | Q 11 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of `(x/3 + 9y)^10`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


Middle term in the expansion of (a3 + ba)28 is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×