English

Find A, B and N in the Expansion of (A + B)N, If the First Three Terms in the Expansion Are 729, 7290 and 30375 Respectively. - Mathematics

Advertisements
Advertisements

Question

Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.

Solution

\[\text{ We have: } \]

\[ T_1 = 729, T_2 = 7290 \text{ and }  T_3 = 30375\]

\[\text{ Now,}  \]

\[ ^{n}{}{C}_0 a^n b^0 = 729\]

\[ \Rightarrow a^n = 729\]

\[ \Rightarrow a^n = 3^6 \]

\[ ^{n}{}{C}_1 a^{n - 1} b^1 = 7290\]

\[^{n}{}{C}_2 a^{n - 2} b^2 = 30375\]

\[\text{ Also, } \]

\[\frac{^{n}{}{C}_2 a^{n - 2} b^2}{^{n}{}{C}_1 a^{n - 1} b^1} = \frac{30375}{7290}\]

\[ \Rightarrow \frac{n - 1}{2} \times \frac{b}{a} = \frac{25}{6} . . . (i)\]

\[ \Rightarrow \frac{(n - 1)b}{a} = \frac{25}{3}\]

\[\text{ And } , \]

\[\frac{^{n}{}{C}_1 a^{n - 1} b^1}{^{n}{}{C}_0 a^n b^0} = \frac{7290}{729}\]

\[ \Rightarrow \frac{nb}{a} = \frac{10}{1} . . . (ii)\]

\[\text{ On dividing (ii) by (i), we get } \]

\[\frac{\frac{nb}{a}}{\frac{(n - 1)b}{a}} = \frac{10 \times 3}{25}\]

\[ \Rightarrow \frac{n}{n - 1} = \frac{6}{5}\]

\[ \Rightarrow n = 6\]

\[\text{ Since } , a^6 = 3^6 \]

\[\text{ Hence,}  a = 3\]

\[\text{ Now } , \frac{nb}{a} = 10\]

\[ \Rightarrow b = 5\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 34 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of x5 in (x + 3)8


Find the 4th term in the expansion of (x – 2y)12 .


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


The last two digits of the numbers 3400 are 01.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×