Advertisements
Advertisements
Question
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Solution
\[\text{ In the expansion of } \left( x + a \right)^n , \text{ the 2nd, 3rd and 4th terms are } ^{n}{}{C}_1 x^{n - 1} a^1 , ^{n}{}{C}_2 x^{n - 2} a^2 \text{ and } ^{n}{}{C}_3 x^{n - 3} a^3 , \ \text{ respectively } . \]
\[\text{ According to the question } , \]
\[ ^{n}{}{C}_1 x^{n - 1} a^1 = 240 \]
\[ ^{n}{}{C}_2 x^{n - 2} a^2 = 720\]
\[^{n}{}{C}_3 x^{n - 3} a^3 = 1080\]
\[ \Rightarrow \frac{^{n}{}{C}_2 x^{n - 2} a^2}{^{n}{}{C}_1 x^{n - 1} a^1} = \frac{720}{240}\]
\[ \Rightarrow \frac{n - 1}{2x}a = 3\]
\[ \Rightarrow \frac{a}{x} = \frac{6}{n - 1} . . . \left( 1 \right)\]
\[\text{ Also } , \]
\[\frac{^{n}{}{C}_3 x^{n - 3} a^3}{^{n}{}{C}_2 x^{n - 2} a^2} = \frac{1080}{720}\]
\[ \Rightarrow \frac{n - 2}{3x}a = \frac{3}{2}\]
\[ \Rightarrow \frac{a}{x} = \frac{9}{2n - 4} . . . \left( 2 \right)\]
\[\text{ Using } \left( 1 \right) \text{ and } \left( 2 \right) \text{ we get } \]
\[\frac{6}{n - 1} = \frac{9}{2n - 4}\]
\[ \Rightarrow n = 5\]
\[\text{ Putting in eqn } \left( 1 \right) \text{ we get } \]
\[ \Rightarrow 2a = 3x\]
\[\text{ Now } , ^{5}{}{C}_1 x^{5 - 1} \left( \frac{3}{2}x \right) = 240\]
\[ \Rightarrow 15 x^5 = 480\]
\[ \Rightarrow x^5 = 32\]
\[ \Rightarrow x = 2\]
\[\text{ By putting the value of x and n in} \left( 1 \right) \text{ we get} \]
\[a = 3\]
APPEARS IN
RELATED QUESTIONS
Find the coefficient of x5 in (x + 3)8
Find the 4th term in the expansion of (x – 2y)12 .
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
The number of terms in the expansion of [(2x + y3)4]7 is 8.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.