English

Find n in the binomial (23+133)n if the ratio of 7th term from the beginning to the 7th term from the end is 16 - Mathematics

Advertisements
Advertisements

Question

Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`

Sum

Solution

The given expression is `(root(3)(2) + 1/(root(3)(3)))^"n"` 

= `(2^(1/3) + 1/3^(1/3))^"n"`

General Term `"T"(r + 1) = ""^n"C"_r x^(n - r) y^r`

T7 = T6+1 = `""^n"C"_6 (2^(1/3))^(n - 6)  (1/(3^(1/3)))^6`

= `""^n"C"_6 (2)^((n -6)/3) * (1/3^2)`

= `""^n"C"_6 (2)^((n - 6)/3) * (3)^-2`

7th term from the end = (n – 7 + 2)th term from the beginning

= (n – 5)th term from the beginning

So, `"T"_(n - 6 + 1) = ""^n"C"_(n - 6) (2^(1/3))^(n - n + 6) (1/3^(1/3))^(n - 6)`

= `""^n"C"_(n - 6) (2)^2 * (1/(3^((n - 6)/3)))`

= `""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)`

We get `(""^n"C"_6 ^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`

⇒ `(""^n"C"_(n - 6) (2)^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`

⇒ `(2)^((n - 6)/3 - 2) * (3)^(-2 (6 - n)/3) = 1/6`

⇒ `(2)^((n - 6 - 6)/3) * (3)^((-6 - 6 + n)/3) = 1/6`

⇒ `(2)^((n - 12)/3) * (3)^((n - 12)/3)` = (6)-1

⇒ `(6)^((n - 12)/3) = (6)^-1`

⇒ `(n - 12)/3` = – 1

⇒ n – 12 = – 3

⇒ n = 12 – 3 = 9

Hence, the required value of n is 9.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 143]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 14 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


The last two digits of the numbers 3400 are 01.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×