Advertisements
Advertisements
Question
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
Solution
The given expression is `(root(3)(2) + 1/(root(3)(3)))^"n"`
= `(2^(1/3) + 1/3^(1/3))^"n"`
General Term `"T"(r + 1) = ""^n"C"_r x^(n - r) y^r`
T7 = T6+1 = `""^n"C"_6 (2^(1/3))^(n - 6) (1/(3^(1/3)))^6`
= `""^n"C"_6 (2)^((n -6)/3) * (1/3^2)`
= `""^n"C"_6 (2)^((n - 6)/3) * (3)^-2`
7th term from the end = (n – 7 + 2)th term from the beginning
= (n – 5)th term from the beginning
So, `"T"_(n - 6 + 1) = ""^n"C"_(n - 6) (2^(1/3))^(n - n + 6) (1/3^(1/3))^(n - 6)`
= `""^n"C"_(n - 6) (2)^2 * (1/(3^((n - 6)/3)))`
= `""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)`
We get `(""^n"C"_6 ^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`
⇒ `(""^n"C"_(n - 6) (2)^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`
⇒ `(2)^((n - 6)/3 - 2) * (3)^(-2 (6 - n)/3) = 1/6`
⇒ `(2)^((n - 6 - 6)/3) * (3)^((-6 - 6 + n)/3) = 1/6`
⇒ `(2)^((n - 12)/3) * (3)^((n - 12)/3)` = (6)-1
⇒ `(6)^((n - 12)/3) = (6)^-1`
⇒ `(n - 12)/3` = – 1
⇒ n – 12 = – 3
⇒ n = 12 – 3 = 9
Hence, the required value of n is 9.
APPEARS IN
RELATED QUESTIONS
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the middle terms in the expansions of `(3 - x^3/6)^7`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
The last two digits of the numbers 3400 are 01.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.