English

Find the Coefficient of A4 in the Product (1 + 2a)4 (2 − A)5 Using Binomial Theorem. - Mathematics

Advertisements
Advertisements

Question

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

Solution

\[(1 + 2a )^4 (2 - a )^5 \]
\[ = [ ^{4}{}{C}_0 (2a )^0 + ^{4}{}{C}_1 (2a )^1 +^{4}{}{C}_2 (2a )^2 + ^{4}{}{C}_3 (2a )^3 +^{4}{}{C}_4 (2a )^4 ] \times \]
\[ [ ^{5}{}{C}_0 (2 )^5 ( - a )^0 +^{5}{}{C}_1 (2 )^4 ( - a )^1 + ^{5}{}{C}_2 (2 )^3 ( - a )^2 + ^{5}{}{C}_3 (2 )^2 ( - a )^3 + ^{5}{}{C}_4 (2 )^1 ( - a )^4 + ^{5}{}{C}_5 (2 )^0 ( - a )^5 ]\]
\[ = [1 + 8a + 24 a^2 + 32 a^3 + 16 a^4 ] \times [32 - 80a + 80 a^2 - 40 a^3 + 10 a^4 - a^5 ]\]
\[\text{ Coefficient of } a^4 = 10 - 320 + 1920 - 2560 + 512 = - 438\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 26 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of x5 in (x + 3)8


Write the general term in the expansion of (x2 – y)6


Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The last two digits of the numbers 3400 are 01.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×