Advertisements
Advertisements
Question
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
Solution
Given expression is (x + a)n
(x + a)n = nC0xn a0 + nC1xn–1a + nC2xn–2a2 + nC3xn–3a3 + … + nCnan
Sum of odd terms,
O = `""^n"C"_0 x^n + ""^n"C"_2 x^(n - 2)a^2 + ""^n"C"+4x^(n - 4)a^4` + ...
And the sum of even terms,
E = `""^n"C"_1x^(n - 1) * a + ""^n"C"_3x^(n - 3)a^3 + ""^n"C"_5x^(n - 5)a^5` + ...
Now (x + a)n = O + E ......(i)
Similarly (x – a)n = O – E .....(ii)
Multiplying equation (i) and equation (ii), we get,
(x + a)n (x – a)n = (O + E)(O – E)
⇒ (x2 – a2)n = O2 – E2
Hence O2 – E2 = (x2 – a2)n
APPEARS IN
RELATED QUESTIONS
Expand the expression: (2x – 3)6
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Which of the following is larger? 9950 + 10050 or 10150
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.