English

In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n - Mathematics

Advertisements
Advertisements

Question

In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 

Sum

Solution

Given expression is (x + a)n

(x + a)n = nC0xn a0 + nC1xn–1a + nC2xn–2a2 + nC3xn–3a3 + … + nCnan

Sum of odd terms,

O = `""^n"C"_0 x^n + ""^n"C"_2 x^(n - 2)a^2 + ""^n"C"+4x^(n - 4)a^4` + ...

And the sum of even terms,

E = `""^n"C"_1x^(n - 1) * a + ""^n"C"_3x^(n - 3)a^3 + ""^n"C"_5x^(n - 5)a^5` + ...

Now (x + a)n = O + E  ......(i)

Similarly (x – a)n = O – E   .....(ii)

Multiplying equation (i) and equation (ii), we get,

(x + a)n (x – a)n = (O + E)(O – E)

⇒ (x2 – a2)n = O2 – E2

Hence O2 – E2 = (x2 – a2)n

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 143]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 15.(i) | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate the following:

(96)3


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Which of the following is larger? 9950 + 10050  or 10150


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×