Advertisements
Advertisements
Question
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Solution
\[\text{ Coefficients of the pth and qth terms are } ^{n}{}{C}_{p - 1} \text{ and }^{n}{}{C}_{q - 1} \text{ respectively } . \]
\[\text{ Thus, we have: } \]
\[ ^{n}{}{C}_{p - 1} =^{n}{}{C}_{q - 1} \]
\[ \Rightarrow p - 1 = q - 1 \text{ or,} p - 1 + q - 1 = n [ \because ^{n}{}{C}_r =^n C_s \Rightarrow r = s \text{ or, } r + s = n]\]
\[ \Rightarrow p = q\text{ or } , p + q = n + 2\]
If \[p \neq q\], then \[p + q = n + 2\]
APPEARS IN
RELATED QUESTIONS
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.