English

In the Expansion of ( 1 2 X 1 / 3 + X − 1 / 5 ) 8 , the Term Independent of X is (A) T5 (B) T6 (C) T7 (D) T8 - Mathematics

Advertisements
Advertisements

Question

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

Options

  • T5

  •  T6

  •  T7

  • T8

     
MCQ

Solution

T6
Suppose the (r + 1)th term in the given expansion is independent of x.
Thus, we have:

\[T_{r + 1} =^{8}{}{C}_r \left( \frac{1}{2} x^{1/3} \right)^{8 - r} ( x^{- 1/5} )^r \]

\[ = ^{8}{}{C}_r \frac{1}{2^{8 - r}} x^\frac{8 - r}{3} - \frac{r}{5} \]

\[\text{ For this term to be independent of x, we must have } \]

\[\frac{8 - r}{3} - \frac{r}{5} = 0\]

\[ \Rightarrow 40 - 5r - 3r = 0\]

\[ \Rightarrow r = 5\]

\[\text{ Hence, the required term is the 6th term, i . e  } . T_6\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.4 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.4 | Q 14 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of x5 in (x + 3)8


Find the coefficient of a5b7 in (a – 2b)12


Find the 4th term in the expansion of (x – 2y)12 .


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×