Advertisements
Advertisements
प्रश्न
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
उत्तर
Given expression is (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
Let us consider `(3/2 x^2 - 1/(3x))^9`
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
`"T"_(r + 1) = ""^9"C"_r (3/2 x^2)^(9 - r) (- 1/(3x))^r`
= `""^9"C"_r (3/2)^(9 - r) (x)^(18 - 2r) * (- 1/3)^r * 1/(x)^r`
= `""^9"C"_r (3/2)^(9 - r) (x)^(18 - 2r - r) * (- 1/3)^r`
= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * x^(18 - 3r)`
So, the general term in the expansion of
`(1 + x + 2x^3) (3/2 x^2 - 1/(3x))^9`
= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(18 - 3r) + ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(19 - 3r) + 2 * ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(21 - 3r)`
For getting the term independent of x,
Put 18 – 3r = 0, 19 – 3r = 0 and 21 – 3r = 0, we get
r = 6
r = `19/3` and r = 7
The possible value of r are 6 and 7 ```.....(because r ≠ 19/3)`
∴ The term independent of x is
= `""^9"C"_6 (3/2)^(9 - 6) (- 1/3)^6 + 2 * ""^9"C"_7 (3/2)^(9 - 7) (- 1/3)^7`
= `(9 xx 8 xx 7 xx 6!)/(3 xx 2 xx 1 xx 6!) * 3^3/2^3 * 1/3^6 - 2 * (9 xx 8 xx 7!)/(7!2 xx 1) * 3^2/2^2 * 1/3^7`
= `84/8 * 1/3^3 - 36/4 * 2/3^5`
= `7/18 - 2/27`
= `(21 - 4)/54`
= `17/54`
Hence, the required term = `17/54`
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – y)6
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.