मराठी

The coefficient of x4 in ( x 2 − 3 x 2 ) 10 is - Mathematics

Advertisements
Advertisements

प्रश्न

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

पर्याय

  •  \[\frac{405}{256}\]

  •  \[\frac{504}{259}\]

  •  \[\frac{450}{263}\]

  • none of these

     
MCQ

उत्तर

 \[\frac{405}{256}\] 

\[\text{ Suppose } x^4 \text{ occurs at the (r + 1)th term in the given expansion }  . \]

\[\text{ Then, we have } \]

\[ T_{r + 1} = ^{10}{}{C}_r (\frac{x}{2} )^{10 - r} \left( \frac{- 3}{2 x^2} \right)^r \]

`= ( - 1 )^r " ^10C _r \frac{3^r}{2^{10 - r}} x^{10 - r - 2r} `

\[\text{ For this term to contain } x^4 , \text{ we must have: }  \]

\[10 - 3r = 4\]

\[ \Rightarrow r = 2\]

\[ \therefore \text{ Required coefficient } = ^{10}{}{C}_2 \frac{3^2}{2^8} = \frac{10 \times 9 \times 9}{2 \times 2^8} = \frac{405}{256}\]

shaalaa.com
Introduction of Binomial Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.4 | Q 17 | पृष्ठ ४७

संबंधित प्रश्‍न

Using binomial theorem, write down the expansions  :

(iii)  \[\left( x - \frac{1}{x} \right)^6\]

\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]

\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]

 

 


Using binomial theorem, write down the expansions  . 

(i)  \[\left( 2x + 3y \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ii)  \[\left( 2x - 3y \right)^4\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ix) \[\left( x + 1 - \frac{1}{x} \right)\]

 


Using binomial theorem, write down the expansions  :

(x)  \[\left( 1 - 2x + 3 x^2 \right)^3\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .

 

 


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem, prove that  \[3^{2n + 2} - 8n - 9\]  is divisible by 64, \[n \in N\] .

 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\]  contains x and y to one and the same power?

 

 


Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?

 
 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\]  and \[\left( 1 + x^2 \right)^n\]  respectively, then write the relation between a and b.

 
 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×