मराठी

Using Binomial Theorem, Write Down the Expansions : (Viii) ( 1 + 2 X − 3 X 2 ) 5 - Mathematics

Advertisements
Advertisements

प्रश्न

Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 

उत्तर

(viii)  \[(1 + 2x - 3 x^2 )^5 \]
\[\text{ Consider 1 - 2x and } 3 x^2 \text{ as two separate entities and apply the binomial theorem }  . \]
\[\text{ Now } , \]
\[^{5}{}{C}_0 (1 + 2x )^5 (3x )^0 -^{5}{}{C}_1 (1 + 2x )^4 (3 x^2 )^1 + ^{5}{}{C}_2 (1 + 2x )^3 (3 x^2 )^2 -^{5}{}{C}_3 (1 + 2x )^2 (3 x^2 )^3 + ^{5}{}{C}_4 (1 + 2x )^1 (3 x^2 )^4 -^{5}{}{C}_5 (1 + 2x )^0 (3 x^2 )^5 \]
\[ = (1 + 2x )^5 - 5(1 + 2x )^4 \times 3 x^2 + 10 \times (1 + 2x )^3 \times 9 x^4 - 10 \times (1 + 2x )^2 \times 27 x^6 + 5(1 + 2x) \times 81 x^8 - 243 x^{10} \]
\[ = ^{5}{}{C}_0 \times (2x )^0 + ^{5}{}{C}_1 \times (2x )^1 + ^{5}{}{C}_2 \times (2x )^2 + ^{5}{}{C}_3 \times (2x )^3 + ^{5}{}{C}_4 \times (2x )^4 +^{5}{}{C}_5 \times (2x )^5 - \]
\[ 15 x^2 [ ^{4}{}{C}_0 (2x )^0 + ^{4}{}{C}_1 (2x )^1 + ^{4}{}{C}_2 (2x )^2 + ^{4}{}{C}_3 (2x )^3 + ^{4}{}{C}_4 (2x )^4 ] + \]
\[ 90 x^4 [1 + 8 x^3 + 6x + 12 x^2 ] - 270 x^6 (1 + 4 x^2 + 4x) + 405 x^8 + 810 x^9 - 243 x^{10} \]
\[ = 1 + 10x + 40 x^2 + 80 x^3 + 80 x^4 + 32 x^5 - 15 x^2 - 120 x^3 - {360}^4 - 480 x^5 - 240 x^6 + \]
\[ 90 x^4 + 720 x^7 + 540 x^5 + 1080 x^6 - 270 x^6 - 1080 x^8 - 1080 x^7 + 405 x^8 + 810 x^9 - 243 x^{10} \]
\[ = 1 + 10x + 25 x^2 - 40 x^3 - 190 x^4 + 92 x^5 + 570 x^6 - 360 x^7 - 675 x^8 + 810 x^9 - 243 x^{10} \]

shaalaa.com
Introduction of Binomial Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.1 | Q 1.08 | पृष्ठ ११

संबंधित प्रश्‍न

Using binomial theorem, write down the expansions  :

(iii)  \[\left( x - \frac{1}{x} \right)^6\]

\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]

\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]

 

 


Using binomial theorem, write down the expansions  :

(ii)  \[\left( 2x - 3y \right)^4\]

 


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Find  \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .

 

Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .

 

 


Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .

 

Using binomial theorem, prove that  \[3^{2n + 2} - 8n - 9\]  is divisible by 64, \[n \in N\] .

 

Find the coefficient of: 

(i) x10 in the expansion of  \[\left( 2 x^2 - \frac{1}{x} \right)^{20}\]

 

Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\]  contains x and y to one and the same power?

 

 


If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\]  and \[\left( 1 + x^2 \right)^n\]  respectively, then write the relation between a and b.

 
 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×