मराठी

Evaluate the (Ix) ( √ 3 + √ 2 ) 6 − ( √ 3 − √ 2 ) 6 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 

उत्तर

(ix) \[(\sqrt{3} + \sqrt{2} )^6 - (\sqrt{3} - \sqrt{2} )^6 \]
\[ = 2[^{6}{}{C}_1 (\sqrt{3} )^5 (\sqrt{2} )^1 + 6{6}{}{C}_3 (\sqrt{3} )^3 (\sqrt{2} )^3 + ^{6}{}{C}_5 (\sqrt{3} )^1 (\sqrt{2} )^5 ]\]

\[= 2[6 \times 9\sqrt{3} \times \sqrt{2} + 20 \times 3\sqrt{3} \times 2\sqrt{2} + 6 \times \sqrt{3} \times 4\sqrt{2}]\]
\[ = 2[\sqrt{6}(54 + 120 + 24)]\]
\[ = 396\sqrt{6}\]

shaalaa.com
Introduction of Binomial Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.1 | Q 2.09 | पृष्ठ ११

संबंधित प्रश्‍न

Using binomial theorem, write down the expansions  :

(iii)  \[\left( x - \frac{1}{x} \right)^6\]

\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]

\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]

 

 


Using binomial theorem, write down the expansions  . 

(i)  \[\left( 2x + 3y \right)^5\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(x)  \[\left( 1 - 2x + 3 x^2 \right)^3\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the

(v)  \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]

 


Evaluate the

(vi)  \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]


Evaluate the

(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .

 

 


Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iv) (98)5

 

Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\]  contains x and y to one and the same power?

 

 


Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?

 
 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×