Advertisements
Advertisements
प्रश्न
Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?
उत्तर
Suppose x9 occurs in the given expression at the (r + 1)th term.
Then, we have:
\[T_{r + 1} =^{20}{}{C}_r (2 x^2 )^{20 - r} \left( \frac{- 1}{x} \right)^r \]
\[ = ( - 1 )^r {20}{}{C}_r \left( 2 \right)^{20 - r} \left( x \right)^{40 - 2r - r} \]
\[\text{ For this term to contain } x^9 , \text{ we must have} \]
\[40 - 3r = 9\]
\[ \Rightarrow 3r = 31\]
\[ \Rightarrow r = \frac{31}{3} \]
\[\text{ It is not possible, as r is not an integer } .\]
Hence, there is no term with x9 in the given expression.
APPEARS IN
संबंधित प्रश्न
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(v) \[\left( ax - \frac{b}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(vii) \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]
Using binomial theorem, write down the expansions :
(viii) \[\left( 1 + 2x - 3 x^2 \right)^5\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]
Evaluate the
(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]
Evaluate the
(iv) \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]
Evaluate the
(v) \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]
Evaluate the
(vi) \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Evaluate the
(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Using binomial theorem evaluate .
(iii) (101)4
Using binomial theorem evaluate .
(iv) (98)5
Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .
Using binomial theorem, prove that \[3^{2n + 2} - 8n - 9\] is divisible by 64, \[n \in N\] .
Find the coefficient of:
(ii) x7 in the expansion of \[\left( x - \frac{1}{x^2} \right)^{40}\]
Find the coefficient of:
(iii) \[x^{- 15}\] in the expansion of \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Find the coefficient of:
(vi) x in the expansion of \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]
Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\] contains x and y to one and the same power?
Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]
The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is
If \[T_2 / T_3\] in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\] in the expansion of \[\left( a + b \right)^{n + 3}\] are equal, then n =
If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\] is equal to 256, then the term independent of x is
The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is