मराठी

If the Coefficient of X in ( X 2 + λ X ) 5 is 270, Then λ = (A) 3 (B) 4 (C) 5 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

पर्याय

  • 3

  • 4

  •  5

  •  none of these

     
MCQ

उत्तर

3

\[\text{ The coefficient of x in the given expansion where x occurs at the (r + 1)th term }  . \]

\[\text{ We have } \]

\[ ^{5}{}{C}_r ( x^2 )^{5 - r} \left( \frac{\lambda}{x} \right)^r \]

\[ =^{5}{}{C}_r \lambda^r x^{10 - 2r - r} \]

\[\text{ For it to contain x, we must have: } \]

\[10 - 3r = 1\]

\[ \Rightarrow r = 3 \]

\[ \therefore \text{ Coefficient of x in the given expansion: }  \]

\[ ^{5}{}{C}_3 \lambda^3 = 10 \lambda^3 \]

\[\text{ Now, we have } \]

\[10 \lambda^3 = 270\]

\[ \Rightarrow \lambda^3 = 27\]

\[ \Rightarrow \lambda = 3\]

shaalaa.com
Introduction of Binomial Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.4 | Q 16 | पृष्ठ ४७

संबंधित प्रश्‍न

Using binomial theorem, write down the expansions  :

(ii)  \[\left( 2x - 3y \right)^4\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the 

(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Find  \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .

 

Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .

 

Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(vii) \[a^5 b^7\]  in the expansion of  \[\left( a - 2b \right)^{12}\]

 
 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\]  contains x and y to one and the same power?

 

 


Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?

 
 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

If  \[T_2 / T_3\]  in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\]  in the expansion of \[\left( a + b \right)^{n + 3}\]  are equal, then n =

 
 

The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×