Advertisements
Advertisements
Question
Using binomial theorem, write down the expansions :
(viii) \[\left( 1 + 2x - 3 x^2 \right)^5\]
Solution
(viii) \[(1 + 2x - 3 x^2 )^5 \]
\[\text{ Consider 1 - 2x and } 3 x^2 \text{ as two separate entities and apply the binomial theorem } . \]
\[\text{ Now } , \]
\[^{5}{}{C}_0 (1 + 2x )^5 (3x )^0 -^{5}{}{C}_1 (1 + 2x )^4 (3 x^2 )^1 + ^{5}{}{C}_2 (1 + 2x )^3 (3 x^2 )^2 -^{5}{}{C}_3 (1 + 2x )^2 (3 x^2 )^3 + ^{5}{}{C}_4 (1 + 2x )^1 (3 x^2 )^4 -^{5}{}{C}_5 (1 + 2x )^0 (3 x^2 )^5 \]
\[ = (1 + 2x )^5 - 5(1 + 2x )^4 \times 3 x^2 + 10 \times (1 + 2x )^3 \times 9 x^4 - 10 \times (1 + 2x )^2 \times 27 x^6 + 5(1 + 2x) \times 81 x^8 - 243 x^{10} \]
\[ = ^{5}{}{C}_0 \times (2x )^0 + ^{5}{}{C}_1 \times (2x )^1 + ^{5}{}{C}_2 \times (2x )^2 + ^{5}{}{C}_3 \times (2x )^3 + ^{5}{}{C}_4 \times (2x )^4 +^{5}{}{C}_5 \times (2x )^5 - \]
\[ 15 x^2 [ ^{4}{}{C}_0 (2x )^0 + ^{4}{}{C}_1 (2x )^1 + ^{4}{}{C}_2 (2x )^2 + ^{4}{}{C}_3 (2x )^3 + ^{4}{}{C}_4 (2x )^4 ] + \]
\[ 90 x^4 [1 + 8 x^3 + 6x + 12 x^2 ] - 270 x^6 (1 + 4 x^2 + 4x) + 405 x^8 + 810 x^9 - 243 x^{10} \]
\[ = 1 + 10x + 40 x^2 + 80 x^3 + 80 x^4 + 32 x^5 - 15 x^2 - 120 x^3 - {360}^4 - 480 x^5 - 240 x^6 + \]
\[ 90 x^4 + 720 x^7 + 540 x^5 + 1080 x^6 - 270 x^6 - 1080 x^8 - 1080 x^7 + 405 x^8 + 810 x^9 - 243 x^{10} \]
\[ = 1 + 10x + 25 x^2 - 40 x^3 - 190 x^4 + 92 x^5 + 570 x^6 - 360 x^7 - 675 x^8 + 810 x^9 - 243 x^{10} \]
APPEARS IN
RELATED QUESTIONS
Using binomial theorem, write down the expansions :
(ii) \[\left( 2x - 3y \right)^4\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Using binomial theorem, write down the expansions :
(v) \[\left( ax - \frac{b}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]
Using binomial theorem, write down the expansions :
(vii) \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]
Evaluate the
(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]
Evaluate the
(v) \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]
Evaluate the
(vi) \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Evaluate the
(viii) \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Evaluate the
(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iv) (98)5
Find the coefficient of:
(iii) \[x^{- 15}\] in the expansion of \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]
Find the coefficient of:
(vi) x in the expansion of \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]
Find the coefficient of:
(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]
Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\] contains x and y to one and the same power?
Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]
If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\] and \[\left( 1 + x^2 \right)^n\] respectively, then write the relation between a and b.
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\] is equal to 256, then the term independent of x is
The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]
The coefficient of x8 y10 in the expansion of (x + y)18 is
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is