English

Evaluate the (X) { a 2 + √ a 2 − 1 } 4 + { a 2 − √ a 2 − 1 } 4 - Mathematics

Advertisements
Advertisements

Question

Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Solution

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4 \]
\[ = 2[ ^{4}{}{C}_0 ( a^2 )^4 (\sqrt{a^2 - 1} )^0 +^{4}{}{C}_2 ( a^2 )^2 (\sqrt{a^2 - 1} )^2 + ^{4}{}{C}_4 ( a^2 )^0 (\sqrt{a^2 - 1} )^4 ]\]
\[ = 2[ a^8 + 6 a^4 ( a^2 - 1) + ( a^2 - 1 )^2 ]\]
\[ = 2[ a^8 + 6 a^6 - 6 a^4 + a^4 + 1 - 2 a^2 ]\]
\[ = 2 a^8 + 12 a^6 - 10 a^4 - 4 a^2 + 2\]

 

shaalaa.com
Introduction of Binomial Theorem
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 2.1 | Page 11

RELATED QUESTIONS

Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(ix) \[\left( x + 1 - \frac{1}{x} \right)\]

 


Using binomial theorem, write down the expansions  :

(x)  \[\left( 1 - 2x + 3 x^2 \right)^3\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the 

(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(v)  \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]

 


Evaluate the

(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .

 

 


Using binomial theorem evaluate :

(i) (96)3


Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(vii) \[a^5 b^7\]  in the expansion of  \[\left( a - 2b \right)^{12}\]

 
 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?

 
 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\]  and \[\left( 1 + x^2 \right)^n\]  respectively, then write the relation between a and b.

 
 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

If  \[T_2 / T_3\]  in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\]  in the expansion of \[\left( a + b \right)^{n + 3}\]  are equal, then n =

 
 

The coefficient of  \[\frac{1}{x}\]  in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is 

 
 

If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\]  is equal to 256, then the term independent of x is

  

The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×