English

The Coefficient of 1 X in the Expansion of ( 1 + X ) N ( 1 + 1 X ) N Is(A) N ! [ ( N − 1 ) ! ( N + 1 ) ! ](B) ( 2 N ) ! [ ( N − 1 ) ! ( N + 1 ) ! ] (C) ( 2 N ) ! ( 2 N − 1 ) ! ( 2 N + 1 ) ! - Mathematics

Advertisements
Advertisements

Question

The coefficient of  1x  in the expansion of (1+x)n(1+1x)n is 

 
 

Options

  •  n![(n1)!(n+1)!]

  • (2n)![(n1)!(n+1)!]

  •  (2n)!(2n1)!(2n+1)!

  •  none of these

     
MCQ

Solution

(2n)![(n1)!(n+1)!]

 Coefficient of 1x in the given expansion = Coefficient of 1 in (1+x)n× Coefficient of1xin(1+1x)n+ Coefficient of x in (1+x)n× Coefficient of 1x2 in (1+1x)n

=nC0×nC1+nC1×nC2

=n+n×n!2(n2)!

=n+nn(n1)2

= (2n)![(n1)!(n+1)!]

shaalaa.com
Introduction of Binomial Theorem
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.4 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.4 | Q 20 | Page 47

RELATED QUESTIONS

Using binomial theorem, write down the expansions  . 

(i)  (2x+3y)5

 


Using binomial theorem, write down the expansions  :

(ii)  (2x3y)4

 


Using binomial theorem, write down the expansions  :

(iv)  (13x)7

 


Using binomial theorem, write down the expansions  :

(v) (axbx)6

 


Using binomial theorem, write down the expansions  :

(vii)  (x3a3)6

 


Using binomial theorem, write down the expansions  :

(viii)  (1+2x3x2)5

 


Using binomial theorem, write down the expansions  :

(ix) (x+11x)

 


Using binomial theorem, write down the expansions  :

(x)  (12x+3x2)3

 


Evaluate the 

(i)(x+1+x1)6+(x+1x1)6

 


Evaluate the 

(iii)(1+2x)5+(12x)5

 


Evaluate the

(iv)  (2+1)6+(21)6

 


Evaluate the

(vii) (3+1)5(31)5

 


Evaluate the

(viii)  (0.99)5+(1.01)5

 

Evaluate the

(ix) (3+2)6(32)6

 


Find  (a+b)4(ab)4 . Hence, evaluate (3+2)4(32)4 .

 

Find (x+1)6+(x1)6 . Hence, or otherwise evaluate (2+1)6+216 .

 

 


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem, prove that  32n+28n9  is divisible by 64, nN .

 

Find the coefficient of: 

(ii) x7 in the expansion of  (x1x2)40

 
 

Find the coefficient of: 

(iii)  x15  in the expansion of  (3x2a3x3)10

 

 


Find the coefficient of: 

(viii) x in the expansion of (13x+7x2)(1x)16

 

Write the sum of the coefficients in the expansion of (13x+x2)111

 

If a and b denote respectively the coefficients of xm and xn in the expansion of (1+x)m+n, then write the relation between a and b.

 
 

If a and b are coefficients of xn in the expansions of (1+x)2n and (1+x)2n1 respectively, then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of (13x+10x2)n  and (1+x2)n  respectively, then write the relation between a and b.

 
 
 

The term without x in the expansion of (2x12x2)12 is 

 

The coefficient of x4 in (x23x2)10 is

 

If  T2/T3  in the expansion of (a+b)n and T3/T4  in the expansion of (a+b)n+3  are equal, then n =

 
 

The coefficient of x5 in the expansion of (1+x)21+(1+x)22+...+(1+x)30

 

The coefficient of x8 y10 in the expansion of (x + y)18 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.