Advertisements
Advertisements
Question
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Solution
(iv) (1 − 3x)7
\[=^{7}{}{C}_0 (3x )^0 -^{7}{}{C}_1 (3x )^1 + ^{7}{}{C}_2 (3x )^2 - ^{7}{}{C}_3 (3x )^3 +^{7}{}{C}_4 (3x )^4 - ^{7}{}{C}_5 (3x )^5 +^{7}{}{C}_6 (3x )^6 -^{7}{}{C}_7 (3x )^7 \]
\[ = 1 - 7 \times 3x + 21 \times 9 x^2 - 35 \times 27 x^3 + 35 \times 81 x^4 - 21 \times 243 x^5 + 7 \times 729 x^6 - 2187 x^7 \]
\[ = 1 - 21x + 189 x^2 - 945 x^3 + 2835 x^4 - 5103 x^5 + 5103 x^6 - 2187 x^7\]
APPEARS IN
RELATED QUESTIONS
Using binomial theorem, write down the expansions :
(iii) \[\left( x - \frac{1}{x} \right)^6\]
\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]
\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]
Using binomial theorem, write down the expansions :
(ii) \[\left( 2x - 3y \right)^4\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(v) \[\left( ax - \frac{b}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]
Evaluate the
(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]
Evaluate the
(iv) \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]
Evaluate the
(v) \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Evaluate the
(viii) \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Evaluate the
(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]
Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iii) (101)4
Using binomial theorem evaluate .
(iv) (98)5
Using binomial theorem, prove that \[3^{2n + 2} - 8n - 9\] is divisible by 64, \[n \in N\] .
Find the coefficient of:
(i) x10 in the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)^{20}\]
Find the coefficient of:
(iii) \[x^{- 15}\] in the expansion of \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Find the coefficient of:
(v) \[x^m\] in the expansion of \[\left( x + \frac{1}{x} \right)^n\]
Find the coefficient of:
(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]
Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?
If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.
The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is
If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\] is equal to 256, then the term independent of x is
The coefficient of x8 y10 in the expansion of (x + y)18 is