English

Using Binomial Theorem Evaluate :(I) (96)3 - Mathematics

Advertisements
Advertisements

Question

Using binomial theorem evaluate :

(i) (96)3

Solution

(i) (96)3

\[= (100 - 4 )^3 \]

\[ = ^{3}{}{C}_0 \times {100}^3 \times 4^0 - ^{3}{}{C}_1 \times {100}^2 \times 4^1 +^{3}{}{C}_2 \times {100}^1 \times 4^2 - ^{3}{}{C}_3 \times {100}^0 \times 4^3 \]

\[ = 1000000 - 120000 + 4800 - 64\]

\[ = 884736\]

shaalaa.com
Introduction of Binomial Theorem
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.1 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 5.1 | Page 12

RELATED QUESTIONS

Using binomial theorem, write down the expansions  :

(iii)  \[\left( x - \frac{1}{x} \right)^6\]

\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]

\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]

 

 


Using binomial theorem, write down the expansions  . 

(i)  \[\left( 2x + 3y \right)^5\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the

(v)  \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]

 


Evaluate the

(vi)  \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]


Evaluate the

(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Find  \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .

 

Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem evaluate .

(iv) (98)5

 

Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .

 

Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

If  \[T_2 / T_3\]  in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\]  in the expansion of \[\left( a + b \right)^{n + 3}\]  are equal, then n =

 
 

The coefficient of x8 y10 in the expansion of (x + y)18 is


If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×