Advertisements
Advertisements
Question
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Solution
(iv) Suppose x9 occurs at the (r + 1)th term in the above expression.
Then, we have:
\[T_{r + 1} = ^{9}{}{C}_r ( x^2 )^{9 - r} \left( \frac{- 1}{3x} \right)^r \]
\[ = ( - 1 )^r {9}{}{C}_r \left( x^{18 - 2r - r} \right) \left( \frac{1}{3^r} \right)\]
\[ \text{ For this term to contain } x^9 , \text{ we must have: } \]
\[18 - 3r = 9\]
\[ \Rightarrow 3r = 9\]
\[ \Rightarrow r = 3\]
\[ \therefore \text{ Coefficient of } x^9 = ( - 1 )^3 {9}{}{C}_3 \frac{1}{3^3} = - \frac{9 \times 8 \times 7}{2 \times 9 \times 9} = \frac{- 28}{9}\]
APPEARS IN
RELATED QUESTIONS
Using binomial theorem, write down the expansions :
(iii) \[\left( x - \frac{1}{x} \right)^6\]
\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]
\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]
Using binomial theorem, write down the expansions .
(i) \[\left( 2x + 3y \right)^5\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Using binomial theorem, write down the expansions :
(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]
Using binomial theorem, write down the expansions :
(vii) \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]
Evaluate the
(iv) \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]
Evaluate the
(vi) \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iii) (101)4
Using binomial theorem evaluate .
(iv) (98)5
Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .
Find the coefficient of:
(ii) x7 in the expansion of \[\left( x - \frac{1}{x^2} \right)^{40}\]
Find the coefficient of:
(vi) x in the expansion of \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]
Find the coefficient of:
(vii) \[a^5 b^7\] in the expansion of \[\left( a - 2b \right)^{12}\]
Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\] contains x and y to one and the same power?
Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?
If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\] and \[\left( 1 + x^2 \right)^n\] respectively, then write the relation between a and b.
The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
If \[T_2 / T_3\] in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\] in the expansion of \[\left( a + b \right)^{n + 3}\] are equal, then n =
The coefficient of \[\frac{1}{x}\] in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is
If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\] is equal to 256, then the term independent of x is
The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]
The coefficient of x8 y10 in the expansion of (x + y)18 is
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is