English

P Find the Coefficient Of: (Vii) a 5 B 7 in the Expansion of ( a − 2 B ) 12 - Mathematics

Advertisements
Advertisements

Question

Find the coefficient of: 

(vii) \[a^5 b^7\]  in the expansion of  \[\left( a - 2b \right)^{12}\]

 
 

Solution

Suppose a5 b7 occurs at the (r + 1)th term in the given expression.
Then, we have: 

\[T_{r + 1} = ^{12}{}{C}_r a^{12 - r} ( - 2b )^r \]
\[ = ( - 1 )^r {12}{}{C}_r \left( a^{12 - r} \right) \left( b^r \right)\left( 2^r \right)\]
\[\text{ For this term to contain }  a^5 b^7 , \text{ we must have: } \]
\[12 - r = 5 \]
\[ \Rightarrow r = 7\]
\[ \therefore \text{ Required coefficient } = ( - 1 )^7 {12}{}{C}_7 \left( 2^7 \right) = - \frac{12 \times 11 \times 10 \times 9 \times 8 \times 128}{5 \times 4 \times 3 \times 2} = - 101376\]

shaalaa.com
Introduction of Binomial Theorem
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 9.7 | Page 37

RELATED QUESTIONS

Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ix) \[\left( x + 1 - \frac{1}{x} \right)\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the 

(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(v)  \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]

 


Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iii) (101)4

 


Find the coefficient of: 

(i) x10 in the expansion of  \[\left( 2 x^2 - \frac{1}{x} \right)^{20}\]

 

Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

The coefficient of  \[\frac{1}{x}\]  in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is 

 
 

If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\]  is equal to 256, then the term independent of x is

  

The coefficient of x8 y10 in the expansion of (x + y)18 is


If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×