English

Using Binomial Theorem, Write Down the Expansions : (Ix) ( X + 1 − 1 X ) - Mathematics

Advertisements
Advertisements

Question

Using binomial theorem, write down the expansions  :

(ix) \[\left( x + 1 - \frac{1}{x} \right)\]

 

Solution

(ix)  \[(x + 1 - \frac{1}{x} )^3 \]
\[ = ^{3}{}{C}_0 (x + 1 )^3 (\frac{1}{x} )^0 - ^{3}{}{C}_1 (x + 1 )^2 (\frac{1}{x} )^1 + ^{3}{}{C}_2 (x + 1 )^1 (\frac{1}{x} )^2 - ^{3}{}{C}_3 (x + 1 )^0 (\frac{1}{x} )^3\]

\[= (x + 1 )^3 - 3(x + 1 )^2 \times \frac{1}{x} + 3\frac{x + 1}{x^2} - \frac{1}{x^3}\]
\[ = x^3 + 1 + 3x + 3 x^2 - \frac{3 x^2 + 3 + 6x}{x} + 3\frac{x + 1}{x^2} - \frac{1}{x^3}\]
\[ = x^3 + 1 + 3x + 3 x^2 - 3x - \frac{3}{x} - 6 + \frac{3}{x} + \frac{3}{x^2} - \frac{1}{x^3}\]
\[ = x^3 + 3 x^2 - 5 + \frac{3}{x^2} - \frac{1}{x^3}\]

shaalaa.com
Introduction of Binomial Theorem
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 1.09 | Page 11

RELATED QUESTIONS

Using binomial theorem, write down the expansions  . 

(i)  \[\left( 2x + 3y \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ii)  \[\left( 2x - 3y \right)^4\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Using binomial theorem, write down the expansions  :

(x)  \[\left( 1 - 2x + 3 x^2 \right)^3\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Find  \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .

 

Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .

 

 


Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem evaluate .

(iv) (98)5

 

Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .

 

Find the coefficient of: 

(ii) x7 in the expansion of  \[\left( x - \frac{1}{x^2} \right)^{40}\]

 
 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(vii) \[a^5 b^7\]  in the expansion of  \[\left( a - 2b \right)^{12}\]

 
 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?

 
 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

The coefficient of  \[\frac{1}{x}\]  in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is 

 
 

The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]

 

If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×