Advertisements
Advertisements
Question
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Solution
(i) Here, n, i.e. 9, is an odd number.
Thus, the middle terms are \[\left( \frac{n + 1}{2} \right)\text{th and } \left( \frac{n + 1}{2} + 1 \right)th, \text{ i . e . 5th and 6th } \]
\[Now, \]
\[ T_5 = T_{4 + 1} = ^{9}{}{C}_4 (3x )^{9 - 4} \left( \frac{- x^3}{6} \right)^4 \]
\[ = \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 27 \times 9 \times \frac{1}{36 \times 36} x^{17} \]
\[ = \frac{189}{8} x^{17} \]
\[\text{ and } , \]
\[ T_6 = T_{5 + 1} \]
\[ =^{9}{}{C}_5 (3x )^{9 - 5} \left( \frac{- x^3}{6} \right)^5 \]
\[ = - \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 81 \times \frac{1}{216 \times 36} x^{19} \]
\[ = - \frac{21}{16} x^{19}\]
APPEARS IN
RELATED QUESTIONS
Find the coefficient of a5b7 in (a – 2b)12
Write the general term in the expansion of (x2 – y)6
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Middle term in the expansion of (a3 + ba)28 is ______.
The last two digits of the numbers 3400 are 01.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.