मराठी

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.

पर्याय

  • `(3^"n" + 1)/2`

  • `(3^"n" - 1)/2`

  • `(1 - 3^"n")/2`

  • `3^"n" + 1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals `(3^"n" + 1)/2`.

Explanation:

Putting x = 1 and –1 in

(1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n 

We get 1 = a0 + a1 + a2 + a3 + ... + a2n   ......(1)

And 3n = a0 – a1 + a2 – a3 + ... + a2n    ......(2)

Adding (1) and (2), we get

3n + 1 = 2(a0 + a2 + a4 + ... + a2n)

Therefore a0 + a2 + a4 + ... + a2n = `(3^"n" + 1)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Solved Examples [पृष्ठ १४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Solved Examples | Q 18 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate the following:

(96)3


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×