Advertisements
Advertisements
प्रश्न
Expand the expression: `(2/x - x/2)^5`
उत्तर
By using Binomial Theorem, the expression `(2/x - x/2)^5` can be explained as
`(2/x - x/2)^5 = ^5C_0 (2/x)^5 - ^5C_1 (2/x)^4 (x/2) + ^5C_2 (2/x)^3 (x/2)^2`
- `""^5C_3 (2/x)^2 (x/2)^3 + ^5C_4 (2/x) (x/2)^4 - ^5C_5 (x/2)^5`
= `(32)/x^5 - 5 (16/(x^4)) (x/2) + 10 (8/x^3) (x^2/4) - 10 (4/x^2) (x^3/8) +5 (2/x)(x^4/16) - x^5/32`
= `32/x^5 - 40/x^3 + 20/x - 5x + 5/8 x^3 - x^5/32`
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.