Advertisements
Advertisements
Question
Expand the expression: `(2/x - x/2)^5`
Solution
By using Binomial Theorem, the expression `(2/x - x/2)^5` can be explained as
`(2/x - x/2)^5 = ^5C_0 (2/x)^5 - ^5C_1 (2/x)^4 (x/2) + ^5C_2 (2/x)^3 (x/2)^2`
- `""^5C_3 (2/x)^2 (x/2)^3 + ^5C_4 (2/x) (x/2)^4 - ^5C_5 (x/2)^5`
= `(32)/x^5 - 5 (16/(x^4)) (x/2) + 10 (8/x^3) (x^2/4) - 10 (4/x^2) (x^3/8) +5 (2/x)(x^4/16) - x^5/32`
= `32/x^5 - 40/x^3 + 20/x - 5x + 5/8 x^3 - x^5/32`
APPEARS IN
RELATED QUESTIONS
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using binomial theorem, evaluate f the following:
(101)4
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.