Advertisements
Advertisements
Question
Expand the following (1 – x + x2)4
Solution
Put 1 – x = y.
Then (1 – x + x2)4 = (y + x2)4
= 4C0 y4(x2)0 + 4C1 y3(x2)1 + 4C2 y2(x2)2 + 4C3 y(x2)3 + 4C4 (x2)4
= y4 + 4y3 x2 + 6y2 x4 + 4y x6 + x8
= (1 – x)4 + 4x2 (1 – x)3 + 6x4 (1 – x)2 + 4x6 (1 – x) + x8
= 1 – 4x + 10x2 – 16x3 + 19x4 – 16x5 + 10x6 – 4x7 + x8
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, evaluate of the following:
(102)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find an approximation of (0.99)5 using the first three terms of its expansion.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.