English

The coefficient of a–6b4 in the expansion of (1a-2b3)10 is ______. - Mathematics

Advertisements
Advertisements

Question

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.

Fill in the Blanks

Solution

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is `1120/27`.

Explanation:

The given expansion is `(1/a - (2b)/3)^10`

From a–6b4 

We can take r = 4

∴ T5 = T4+1

= `""^10"C"_4 (1/a)^(10 - 4) (- (2b)/3)^4`

= `""^10"C"_4 (1/a)^6 ((-2)/3)^4 * b^4`

= `(10*9*8*7)/(4*3*2*1) xx 16/81 * a^-6b^4`

= `210 xx 16/81 a^-6b^4`

= `1120/27 a^-6b^4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 146]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 29 | Page 146

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Find an approximation of (0.99)5 using the first three terms of its expansion.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×