मराठी

Find the value of (a2+a2-1)4+(a2-a2-1)4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`

बेरीज

उत्तर

Firstly, the expression (x + y)4 + (x – y)4 is simplified by using Binomial Theorem.

(x + y)4 = 4C0x4 + 4C1x3y + 4C2x2y2 + 4C3xy3 + 4C4y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x - y)4 = 4C0x4 - 4C1x3y + 4C2 x2y2 - 4C3xy3 + 4C4y4

= x4 - 4x3y + 6x2y2 - 4xy3 + y4

∴ (x + y)4 + (x - y)4 = 2(x4 + 6x2 y2 + y4)

Putting x = a2 and y = `sqrt(a^2 - 1)`, we obtain

`a^2  + sqrt((a^2 - 1)^4)  +  a^2  - sqrt((a^2 - 1)^4)  = 2[(a^2)^4   + 6 (a^2)^2  sqrt((a^2 - 1)^2)  + sqrt(a^2  - 1)^4]`

= `2[a^8  + 6a^4  (a^2 - 1)  + (a^2  - 1)^2]`

= `2[a^8  +  6a^6  - 6a^4  + a^4  - 2a^2  + 1]`

= `2[a^8  + 6a^6 - 5a^4  - 2a^2 + 1]`

= `2a^8  + 12a^6 - 10a^4 - 4a^2  + 2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Miscellaneous Exercise | Q 6 | पृष्ठ १७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using binomial theorem, evaluate the following:

(99)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Find an approximation of (0.99)5 using the first three terms of its expansion.


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Expand the following (1 – x + x2)4 


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×