मराठी

Show that 2 4 N + 4 − 15 N − 16 , Where N ∈ N is Divisible by 225. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

उत्तर

We have,

\[2^{4n + 4} - 15n - 16 = 2^{4\left( n + 1 \right)} - 15n - 16\]

\[ = {16}^{n + 1} - 15n - 16\]

\[ = \left( 1 + 15 \right)^{n + 1} - 15n - 16\]

\[ =^{n + 1} C_0 {15}^0 +^{n + 1} C_1 {15}^1 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]

\[ = 1 + (n + 1)15 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]

\[ = 1 + 15n + 15 +^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} - 15n - 16\]

\[ =^{n + 1} C_2 {15}^2 + . . . +^{n + 1} C_{n + 1} {15}^{n + 1} \]

\[ = {15}^2 \left( {}^{n + 1} C_2 + . . . +^{n + 1} C_{n + 1} {15}^{n - 1} \right)\]

\[ = 225\left( {}^{n + 1} C_2 + . . . +^{n + 1} C_{n + 1} {15}^{n - 1} \right)\]

Thus, ​ 

\[2^{4n + 4} - 15n - 16\] , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.1 | Q 12 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x/3 + 1/x)^5`


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×