Advertisements
Advertisements
Question
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Options
`((n + 1)(n + 2))/2`
n + 1
n + 2
(n + 1)n
Solution
The number of terms in the expansion of (a + b + c)n, where n ∈ N is `((n + 1)(n + 2))/2`.
Explanation:
We have (a + b + c)n = [a + (b + c)]n
= an + nC1 an – 1 (b + c)1 + nC2 an – 2 (b + c)2 + ... + nCn (b + c)n
Further, expanding each term of R.H.S., we note that
First term consist of 1 term.
Second term on simplification gives 2 terms.
Third term on expansion gives 3 terms.
Similarly, fourth term on expansion gives 4 terms and so on.
The total number of terms = 1 + 2 + 3 + ... + (n + 1)
= `((n + 1)(n + 2))/2`
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.