Advertisements
Advertisements
Question
The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm. It is melted and recast into cubes, each of the side 45 cm. How many cubes are formed?
Solution
\[\text { Dimension of the metal block is 2 . 25 m } \times 1 . 5 m \times 27 \text { cm, i . e . , 225 cm } \times 150 cm \times 27 cm ( \because 1 m = 100 cm) . \]
\[\text { Volume of the metal block = 225 }\times 150 \times 27 = 911250 {cm}^3 \]
\[\text { This metal block is melted and recast into cubes each of side 45 cm }. \]
\[\text { Volume of a cube = (side )}^3 = {45}^3 = 91125 {cm}^3 \]
\[ \therefore \text { The number of such cubes formed from the metal block } = \frac{\text { volume of the metal block}}{\text { volume of a metal cube} } = \frac{911250 {cm}^3}{91125 {cm}^3} = 10\]
APPEARS IN
RELATED QUESTIONS
A beam 5 m long and 40 cm wide contains 0.6 cubic metre of wood. How thick is the beam?
Fill in the blank in the following so as to make the statement true:
1 kl = ....... m3
Find the surface area of a cube whose edge is 1.2 m.
Find the cost of sinking a tubewell 280 m deep, having diameter 3 m at the rate of Rs 3.60 per cubic metre. Find also the cost of cementing its inner curved surface at Rs 2.50 per square metre.
The square on the diagonal of a cube has an area of 1875 sq. cm. Calculate:
(i) The side of the cube.
(ii) The total surface area of the cube.
When the length of each side of a cube is increased by 3 cm, its volume is increased by 2457 cm3. Find its side. How much will its volume decrease, if the length of each side of it is reduced by 20%?
The ratio between the lengths of the edges of two cubes is in the ratio 3: 2. Find the ratio between their:
(i) total surface area
(ii) volume.
The total surface area of a cube is 864 cm2. Find its volume.
Find the T.S.A and L.S.A of the cube whose side is 21 cm
A cube of side 5 cm is painted on all its faces. If it is sliced into 1 cubic centimetre cubes, how many 1 cubic centimetre cubes will have exactly one of their faces painted?