Advertisements
Advertisements
प्रश्न
The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm. It is melted and recast into cubes, each of the side 45 cm. How many cubes are formed?
उत्तर
\[\text { Dimension of the metal block is 2 . 25 m } \times 1 . 5 m \times 27 \text { cm, i . e . , 225 cm } \times 150 cm \times 27 cm ( \because 1 m = 100 cm) . \]
\[\text { Volume of the metal block = 225 }\times 150 \times 27 = 911250 {cm}^3 \]
\[\text { This metal block is melted and recast into cubes each of side 45 cm }. \]
\[\text { Volume of a cube = (side )}^3 = {45}^3 = 91125 {cm}^3 \]
\[ \therefore \text { The number of such cubes formed from the metal block } = \frac{\text { volume of the metal block}}{\text { volume of a metal cube} } = \frac{911250 {cm}^3}{91125 {cm}^3} = 10\]
APPEARS IN
संबंधित प्रश्न
Fill in the blank in the following so as to make the statement true:
The volume of a cube of side 8 cm is ........
Find the length of 13.2 kg of copper wire of diameter 4 mm, when 1 cubic cm of copper weighs 8.4 gm.
Four identical cubes are joined end to end to form a cuboid. If the total surface area of the resulting cuboid as 648 m2; find the length of the edge of each cube. Also, find the ratio between the surface area of the resulting cuboid and the surface area of a cube.
The internal length, breadth, and height of a box are 30 cm, 24 cm, and 15 cm. Find the largest number of cubes which can be placed inside this box if the edge of each cube is
(i) 3 cm (ii) 4 cm (iii) 5 cm
When the length of each side of a cube is increased by 3 cm, its volume is increased by 2457 cm3. Find its side. How much will its volume decrease, if the length of each side of it is reduced by 20%?
The length of a hall is double its breadth. Its height is 3 m. The area of its four walls (including doors and windows) is 108 m2, find its volume.
The total surface area of a cube is 294cm2. Find its volume.
The total surface area of a cube is 96 cm2. The volume of the cube is ______.
A cube of side 5 cm is painted on all its faces. If it is sliced into 1 cubic centimetre cubes, how many 1 cubic centimetre cubes will have exactly one of their faces painted?
The volume of a cube is 64 cm3. Its surface area is ______.