Advertisements
Advertisements
Question
The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.
Options
`(sqrt(17) - 1)/2`
`sqrt(17)/2`
`(sqrt(17) + 1)/2`
`sqrt(17)/2 + 1`
Solution
The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to `underlinebb((sqrt(17) + 1)/2)`.
Explanation:
f(x) = `sin^-1((|x| + 5)/(x^2 + 1))`
`-1 ≤ (|x| + 5)/(x^2 + 1) ≤ 1`
–(x2 + 1) ≤ |x| + 5 ≤ x2 + 1
–x2 – 1 – 5 ≤ |x| ≤ x2 + 1 – 5
–x2 – 6 ≤ |x| ≤ x2 – 4
(i) x < 0, |x| = –x
–x2 – 6 ≤ –x ≤ x2 ≤ – 4
–x2 ≤ 6 + x ≤ 0 x2 + x – 4 ≥ 0
x2 – x + 6 ≥ 0 x = `(-1 +- sqrt(17))/2`
Complex for all x `x ≤ (-1 - sqrt(17))/2` or
but x < 0 `{:x ≥ (-1 + sqrt(17))/2:}}`common
⇒ x < 0 For x < 0
⇒ `x ≤ (-1 - sqrt(17))/2`
(ii) x > 0, |x| = x
–x2 – 6 ≤ x2 – 4
–x2 – 6 – x ≤ 0 x2 – x – 4 ≥ 0
`{:(x^2 + x + 6 ≥ 0),(x > 0):}}` x = `(1 +- sqrt(17))/2`
again x > 0 `{{:(x ≤ (1 - sqrt(17))/2 or x ≥ (1 + sqrt(17))/2),(x > 0):}`
⇒ `x ≥ (1 + sqrt(17))/2`
So (–∞, –a] ≈ [a, ∞) `(-∞, (-1 - sqrt(17))/2] ∪ [(1 + sqrt(17))/2, ∞)`
⇒ a = `(1 + sqrt(17))/2`