Advertisements
Advertisements
Question
The electronic configuration of oxygen is written as 1s2 2s2 \[\ce{2p^2_{{x}}}\] \[\ce{2p^1_{{y}}}\] \[\ce{2p^1_{{z}}}\] and not as 1s2 2s2 \[\ce{2p^2_{{x}}}\], \[\ce{2p^2_{{y}}}\] \[\ce{2p^0_{{z}}}\], Explain.
Solution
- According to Hund’s rule of maximum multiplicity “Pairing of electrons in the orbitals belonging to the same subshell does not occur unless each orbital belonging to that subshell has got one electron each.”
- Oxygen has 8 electrons. The first two electrons will pair up in the 1s orbital, the next two electrons will pair up in the 2s orbital and this leaves 4 electrons, which must be placed in the 2p orbitals.
- Each of the three degenerate p-orbitals must get one electron of parallel spin before anyone of them receives the second electron of opposite spin. Therefore, two p orbitals have one electron each and one p-orbital will have two electrons.
Thus, the electronic configuration of oxygen is written as 1s2 2s2 \[\ce{2p^2_{{x}}}\] \[\ce{2p^1_{{y}}}\] \[\ce{2p^1_{{z}}}\] and not as 1s2 2s2 \[\ce{2p^2_{{x}}}\], \[\ce{2p^2_{{y}}}\] \[\ce{2p^0_{{z}}}\]
APPEARS IN
RELATED QUESTIONS
Using s, p, d notations, describe the orbital with the following quantum numbers n = 1, l = 0.
Using s, p, d notations, describe the orbital with the following quantum numbers n = 3; l =1.
Choose the correct option.
“No two electrons in the same atoms can have identical set of four quantum numbers”. This statement is known as -
Choose the correct option.
Principal Quantum number describes -
State Heisenberg uncertainty principle.
Define the term Electronic configuration
Write orbital notations for the electron in orbitals with the following quantum numbers.
n = 3, l = 2
Write condensed orbital notation of electronic configuration of the following element:
Carbon (Z = 6)
Write condensed orbital notation of electronic configuration of the following element:
Chlorine (Z = 17)
If n = 3, what are the quantum number l and m?
Write a note on ‘Principal Quantum number.
The principal quantum number (n) and magnetic quantum number (ml) for the valence electrons of rubidium atom (Z = 37) are ____________ respectively.
How many electrons in 19K have n = 3, l = 1?
Which of the following options does not represent ground state electronic configuration of an atom?
Which of the following properties of atom could be explained correctly by Thomson Model of atom?
Number of angular nodes for 4d orbital is ______.
Out of the following pairs of electrons, identify the pairs of electrons present in degenerate orbitals:
(i) | (a) `n = 3, l = 2, m_l = -2, m_s = - 1/2` |
(b) `n = 3, l = 2, m_l = -1, m_s = - 1/2` | |
(ii) | (a) `n = 3, l = 1, m_l = 1, m_s = + 1/2` |
(b) `n = 3, l = 2, m_l = 1, m_s = + 1/2` | |
(iii) | (a) `n = 4, l = 1, m_l = 1, m_s = + 1/2` |
(b) `n = 3, l = 2, m_l = 1, m_s = + 1/2` | |
(iv) | (a) `n = 3, l = 2, m_l = +2, m_s = - 1/2` |
(b) `n = 3, l = 2, m_l = +2, m_s = + 1/2` |
In which of the following pairs, the ions are iso-electronic?
(i) \[\ce{Na^{+}, Mg^{2+}}\]
(ii) \[\ce{Al3^{+}, O-}\]
(iii) \[\ce{Na+ , O2-}\]
(iv) \[\ce{N3-, Cl-}\]
Which of the following orbitals are degenerate?
3dxy, 4dxy 3dz2, 3dyz, 4dyz, 4dz2
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, arrange the following orbitals in the increasing order of energy.
5f, 6d, 7s, 7p
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, solve the questions given below:
Which of the following orbitals has the lowest energy?
5p, 5d, 5f, 6s, 6p
The electronic configuration of valence shell of Cu is 3d104s1 and not 3d94s2. How is this configuration explained?
What is the difference between the terms orbit and orbital?
Match the following species with their corresponding ground state electronic configuration.
Atom / Ion | Electronic configuration |
(i) \[\ce{Cu}\] | (a) 1s2 2s2 2p6 3s2 3p6 3d10 |
(ii) \[\ce{Cu^{2+}}\] | (b) 1s2 2s2 2p6 3s2 3p6 3d10 4s2 |
(iii) \[\ce{Zn^{2+}}\] | (c) 1s2 2s2 2p6 3s2 3p6 3d10 4s1 |
(iv) \[\ce{Cr^{3+}}\] | (d) 1s2 2s2 2p6 3s2 3p6 3d9 |
(e) 1s2 2s2 2p6 3s2 3p6 3d3 |
Match the quantum numbers with the information provided by these.
Quantum number | Information provided |
(i) Principal quantum number | (a) orientation of the orbital |
(ii) Azimuthal quantum number | (b) energy and size of orbital |
(iii) Magnetic quantum number | (c) spin of electron |
(iv) Spin quantum number | (d) shape of the orbital |
Which of the following is the correct plot for the probability density ψ2 (r) as a function of distance 'r' of the electron from the nucleus for 2s orbitals?
In the case of R, S configuration the group having the highest priority is ______.