English

The Equation of the Plane → R = ^ I − ^ J + λ ( ^ I + ^ J + ^ K ) + μ ( ^ I − 2 ^ J + 3 ^ K )In Scalar Product Form is (A) → R ⋅ ( 5 ^ I − 2 ^ J − 3 ^ K ) = 7 (B) → R ⋅ ( 5 ^ I + 2 ^ J − 3 ^ K ) = 7 - Mathematics

Advertisements
Advertisements

Question

The equation of the plane \[\vec{r} = \hat{i} - \hat{j}  + \lambda\left( \hat{i}  + \hat{j} + \hat{k}  \right) + \mu\left( \hat{i}  - 2 \hat{j}  + 3 \hat{k}  \right)\]  in scalar product form is

 

 

 

 

 
 
 

Options

  •   \[\vec{r} \cdot \left( 5 \hat{i}  - 2 \hat{j}  - 3 \hat{k}  \right) = 7\]

  •  \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 3 \hat{k}  \right) = 7\]

  •  \[\vec{r} \cdot \left( 5 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right) = 7\]

  •  None of these

MCQ

Solution

 \[\vec{r} \cdot \left( 5 \hat{i}  - 2 \hat{j}  - 3 \hat{k}  \right) = 7\]

\[\text{ We know that the equation } \vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c} \text{ represents a plane passing through a point whose position vector is } \vec{a} \text{ and parallel to the vectors }  \vec{b} \text{ and }  \vec{c} .\]
\[\text{ Here } , \vec{a} = \hat{i}  - \hat{j}  + 0  \hat{ k }  ; \vec{b} = \hat{i}  + \hat{j}  + \hat{k}  ; \vec{c} = \hat{i}  - 2 \hat{j}  + 3 \hat{k} \]
\[\text{ Normal vector,} \vec{n} = \vec{b} \times \vec{c} \]
\[ = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & - 2 & 3\end{vmatrix}\]
\[ = 5 \hat{i}  - 2 \hat{j}  - 3 \hat{k}  \]
\[\text{ The vector equation of the plane in scalar product form is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( 5 \hat{i} - 2 \hat{j} - 3 \hat{k} \right) = \left( \hat{i} - \hat{j} + 0 \hat{k}  \right) . \left( 5 \hat{i}  - 2 \hat{j}  - 3 \hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left( 5 \hat{i} - 2 \hat{j}- 3 \hat{k} \right) = 5 + 2 + 0\]
\[ \Rightarrow \vec{r} . \left( 5 \hat{i}- 2 \hat{j} - 3 \hat{k}  \right) = 7\]
\[ \Rightarrow \vec{r} . \left( 5 \hat{i} - 2 \hat{j}  - 3 \hat{k} \right) = 7\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - MCQ [Page 85]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
MCQ | Q 7 | Page 85

RELATED QUESTIONS

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

The direction ratios of the perpendicular from the origin to a plane are 12, −3, 4 and the length of the perpendicular is 5. Find the equation of the plane. 


Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is  \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form. 

 

Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Write the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) = 14\]  in normal form.

 
 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

The equation of the plane containing the two lines

\[\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z - 0}{3} \text{ and }\frac{x}{- 2} = \frac{y - 2}{- 3} = \frac{z + 1}{- 1}\]
 
 

The equations of x-axis in space are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×