Advertisements
Advertisements
Question
The following are the sample means and I ranges for 10 samples, each of size 5. Calculate; the control limits for the mean chart and range chart and state whether the process is in control or not.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 5.10 | 4.98 | 5.02 | 4.96 | 4.96 | 5.04 | 4.94 | 4.92 | 4.92 | 4.98 |
Range | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | 0.8 | 0.5 | 0.3 | 0.5 |
Solution
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
Mean | 5.10 | 4.98 | 5.02 | 4.96 | 4.96 | 5.04 | 4.94 | 4.92 | 4.92 | 4.98 | 49.82 |
Range | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | 0.8 | 0.5 | 0.3 | 0.5 | 3.6 |
The control limits for `bar"X"` chart is
`\overset{==}{"X"} = (sumbar"X")/"Number of samples" = 49.82/10` = 4.982
`bar"R" = (sum"R")/"n" = 3.6/10` = 0.6
UCL = `\overset{==}{"X"} + "A"_2bar"R"`
= 4.982 + 0.577(0.36)
= 4.982 + 0.20772
= 5.18972
= 5.19
CL = `\overset{==}{"X"}` = 4.982
LCL = `\overset{==}{"X"} + "A"_2 bar"R"`
= 4.982 – 0.577(0.36)
= 4.982 – 0.20772
= 4.77428
= 4.774
The control limits for range chart is
UCL = `"D"_2bar"R"` = 2.115(3.6)
= 7.614
CL = `bar"R"` = 3.6
LCL = `"D"_3bar"R"`
= 0(0.36)
= 0
APPEARS IN
RELATED QUESTIONS
Mention the types of causes for variation in a production process
Name the control charts for variables
Define R chart
Ten samples each of size five are drawn at regular intervals from a manufacturing process. The sample means `(bar"X")` and their ranges (R) are given below:
Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
`bar"X"` | 49 | 45 | 48 | 53 | 39 | 47 | 46 | 39 | 51 | 45 |
R | 7 | 5 | 7 | 9 | 5 | 8 | 8 | 6 | 7 | 6 |
Calculate the control limits in respect of `bar"X"` chart. (Given A2 = 0.58, D3 = 0 and D4 = 2.115) Comment on the state of control
Construct `bar"X"` and R charts for the following data:
Sample Number | Observations | ||
1 | 32 | 36 | 42 |
2 | 28 | 32 | 40 |
3 | 39 | 52 | 28 |
4 | 50 | 42 | 31 |
5 | 42 | 45 | 34 |
6 | 50 | 29 | 21 |
7 | 44 | 52 | 35 |
8 | 22 | 35 | 44 |
(Given for n = 3, A2 = 1.023, D3 = 0 and D4 = 2.574)
The following data show the values of sample mean `(bar"X")` and its range (R) for the samples of size five each. Calculate the values for control limits for mean, range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 11.2 | 11.8 | 10.8 | 11.6 | 11.0 | 9.6 | 10.4 | 9.6 | 10.6 | 10.0 |
Range | 7 | 4 | 8 | 5 | 7 | 4 | 8 | 4 | 7 | 9 |
(conversion factors for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
The following data show the values of sample means and the ranges for ten samples of size 4 each. Construct the control chart for mean and range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
`bar"X"` | 29 | 26 | 37 | 34 | 14 | 45 | 39 | 20 | 34 | 23 |
R | 39 | 10 | 39 | 17 | 12 | 20 | 05 | 21 | 23 | 15 |
Choose the correct alternative:
The quantities that can be numerically measured can be plotted on a
Choose the correct alternative:
The assignable causes can occur due to
Choose the correct alternative:
The upper control limit for `bar"X"` chart is given by