Advertisements
Advertisements
Question
The following data gives the average life(in hours) and range of 12 samples of 5lamps each. The data are
Sample No | 1 | 2 | 3 | 4 | 5 | 6 |
Sample Mean | 1080 | 1390 | 1460 | 1380 | 1230 | 1370 |
Sample Range | 410 | 670 | 180 | 320 | 690 | 450 |
Sample No | 7 | 8 | 9 | 10 | 11 | 12 |
Sample Mean | 1310 | 1630 | 1580 | 1510 | 1270 | 1200 |
Sample Range | 380 | 350 | 270 | 660 | 440 | 310 |
Construct control charts for mean and range. Comment on the control limits.
Solution
Sample No | Sample Mean `bar"X"` |
Sample Range R |
1 | 1080 | 410 |
2 | 1390 | 670 |
3 | 1460 | 180 |
4 | 1380 | 320 |
5 | 1230 | 690 |
6 | 1370 | 450 |
7 | 1310 | 380 |
8 | 1630 | 350 |
9 | 1580 | 270 |
10 | 1510 | 660 |
11 | 1270 | 440 |
12 | 1200 | 310 |
Total | `sum"X"` = 16410 | `sum"R"` = 5130 |
The control limits for `bar"X"` chart is
`\overset{==}{"X"} = (sum"X")/"Number of sample" = 16410/12` = 1367.5
`bar"R" = (sum"R")/"n" = 5130/12` = 427.5
UCL = `\overset{==}{"X"} + "A"_2 bar"R"`
= 1367.5 + 0.577(427.5)
= 1367.5 + 246.6675
= 1614.1675
= 1614.17
CL = `\overset{==}{"X"} ` = 1367.5
LCL = `\overset{==}{"X"} + "A"_2 bar"R"`
= 1367.5 – 0.577(427.5)
= 1367.5 – 246.6675
= 1120.8325
= 1120.83
The control limits for Range chart is
UCL = `"D"_4bar"R"`
= 2.115(427.5)
= 904.1625
= 904.16
CL = `bar"R"` = 427.5
LCL = `"D"_3bar"R"`
= 0(427.5)
= 0
APPEARS IN
RELATED QUESTIONS
Define assignable cause
Define R chart
Write the control limits for the R chart
Ten samples each of size five are drawn at regular intervals from a manufacturing process. The sample means `(bar"X")` and their ranges (R) are given below:
Sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
`bar"X"` | 49 | 45 | 48 | 53 | 39 | 47 | 46 | 39 | 51 | 45 |
R | 7 | 5 | 7 | 9 | 5 | 8 | 8 | 6 | 7 | 6 |
Calculate the control limits in respect of `bar"X"` chart. (Given A2 = 0.58, D3 = 0 and D4 = 2.115) Comment on the state of control
The following data show the values of sample mean `(bar"X")` and its range (R) for the samples of size five each. Calculate the values for control limits for mean, range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 11.2 | 11.8 | 10.8 | 11.6 | 11.0 | 9.6 | 10.4 | 9.6 | 10.6 | 10.0 |
Range | 7 | 4 | 8 | 5 | 7 | 4 | 8 | 4 | 7 | 9 |
(conversion factors for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
A quality control inspector has taken ten ” samples of size four packets each from a potato chips company. The contents of the sample are given below, Calculate the control limits for mean and range chart.
Sample Number | Observations | |||
1 | 2 | 3 | 4 | |
1 | 12.5 | 12.3 | 12.6 | 12.7 |
2 | 12.8 | 12.4 | 12.4 | 12.8 |
3 | 12.1 | 12.6 | 12.5 | 12.4 |
4 | 12.2 | 12.6 | 12.5 | 12.3 |
5 | 12.4 | 12.5 | 12.5 | 12.5 |
6 | 12.3 | 12.4 | 12.6 | 12.6 |
7 | 12.6 | 12.7 | 12.5 | 12.8 |
8 | 12.4 | 12.3 | 12.6 | 12.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 |
10 | 12.1 | 12.7 | 12.5 | 12.8 |
(Given for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
In a certain bottling industry the quality control inspector recorded the weight of each of the 5 bottles selected at random during each hour of four hours in the morning.
Time | Weight in ml | ||||
8:00 AM | 43 | 41 | 42 | 43 | 41 |
9:00 AM | 40 | 39 | 40 | 39 | 44 |
10:00 AM | 42 | 42 | 43 | 38 | 40 |
11:00 AM | 39 | 43 | 40 | 39 | 42 |
Choose the correct alternative:
Variations due to natural disorder is known as
Choose the correct alternative:
A typical control charts consists of
Choose the correct alternative:
R is calculated using