Advertisements
Advertisements
Question
From the following data, calculate the control limits for the mean and range chart.
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Sample Observations |
50 | 21 | 50 | 48 | 46 | 55 | 45 | 50 | 47 | 56 |
55 | 50 | 53 | 53 | 50 | 51 | 48 | 56 | 53 | 53 | |
52 | 53 | 48 | 50 | 44 | 56 | 53 | 54 | 549 | 55 | |
49 | 50 | 52 | 51 | 48 | 47 | 48 | 53 | 52 | 54 | |
54 | 46 | 47 | 53 | 47 | 51 | 51 | 47 | 54 | 52 |
Solution
Sample No. | Sample Observations |
`sum"X"` | `bar"X" = (sumx)/5` | `"R" = "x"_"max" - "x"_"min"` | ||||
I | II | III | IV | V | ||||
1 | 50 | 55 | 52 | 49 | 54 | 260 | 52 | 55 – 49 = 6 |
2 | 51 | 50 | 53 | 50 | 46 | 250 | 50 | 53 – 46 = 7 |
3 | 50 | 53 | 48 | 52 | 47 | 250 | 50 | 53 – 47 = 6 |
4 | 48 | 53 | 50 | 51 | 53 | 255 | 51 | 53 – 48 = 5 |
5 | 46 | 50 | 44 | 48 | 47 | 235 | 47 | 50 – 44 = 6 |
6 | 55 | 51 | 56 | 47 | 51 | 260 | 52 | 56 – 47 = 9 |
7 | 45 | 48 | 53 | 48 | 51 | 245 | 49 | 53 – 50 = 8 |
8 | 50 | 56 | 54 | 53 | 47 | 270 | 54 | 57 – 50 = 7 |
9 | 47 | 53 | 49 | 52 | 54 | 255 | 51 | 54 – 47 = 7 |
10 | 56 | 53 | 55 | 54 | 52 | 270 | 54 | 56 – 52 = 4 |
Total | `sum"X"` = 510 | `sum"R"` = 65 |
The control limits for `bar"X"` chart is
`\overset{==}{"X"} = (sumbar"X")/"Number od samples" = 510/10` = 51
`bar"R" = (sum"R")/"n" = 65/10` = 6.5
UCL = `\overset{==}{"X"} + "A"_2 bar"R"`
= 51 + 0.577(6.5)
= 51 + 3.7505
= 54.7505
= 54.75
CL = `\overset{==}{"X"}` = 51
UCL = `\overset{==}{"X"} - "A"_2 bar"R"`
= 51 – 0.577(6.5)
= 51 – 3.7505
= 47.2495
= 47.25
The control limits for Range chart is
UCL = `"D"_4bar"R"`
= 2.114(6.5)
= 13.741
CL = `bar"R"` = 6.5
LCL = `"D"_3bar"R"` = 0(6.5) = 0
APPEARS IN
RELATED QUESTIONS
Define Statistical Quality Control
What do you mean by process control?
Define a control chart
Define R chart
What are the uses of statistical quality control?
Write the control limits for the mean chart
The following data show the values of sample mean `(bar"X")` and its range (R) for the samples of size five each. Calculate the values for control limits for mean, range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 11.2 | 11.8 | 10.8 | 11.6 | 11.0 | 9.6 | 10.4 | 9.6 | 10.6 | 10.0 |
Range | 7 | 4 | 8 | 5 | 7 | 4 | 8 | 4 | 7 | 9 |
(conversion factors for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
Choose the correct alternative:
The assignable causes can occur due to
Choose the correct alternative:
R is calculated using
The following are the sample means and I ranges for 10 samples, each of size 5. Calculate; the control limits for the mean chart and range chart and state whether the process is in control or not.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 5.10 | 4.98 | 5.02 | 4.96 | 4.96 | 5.04 | 4.94 | 4.92 | 4.92 | 4.98 |
Range | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | 0.8 | 0.5 | 0.3 | 0.5 |