मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

From the following data, calculate the control limits for the mean and range chart. Sample No. 1 2 3 4 5 6 7 8 9 10 SampleObservations 50 21 50 48 46 55 45 50 47 56 55 50 53 53 50 51 48 56 53 53 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

From the following data, calculate the control limits for the mean and range chart.

Sample No. 1 2 3 4 5 6 7 8 9 10
Sample
Observations
50 21 50 48 46 55 45 50 47 56
55 50 53 53 50 51 48 56 53 53
52 53 48 50 44 56 53 54 549 55
49 50 52 51 48 47 48 53 52 54
54 46 47 53 47 51 51 47 54 52
तक्ता
बेरीज

उत्तर

Sample No. Sample
Observations
`sum"X"` `bar"X" = (sumx)/5` `"R" = "x"_"max" - "x"_"min"`
I II III IV V
1 50 55 52 49 54 260 52 55 – 49 = 6
2 51 50 53 50 46 250 50 53 – 46 = 7
3 50 53 48 52 47 250 50 53 – 47 = 6
4 48 53 50 51 53 255 51 53 – 48 = 5
5 46 50 44 48 47 235 47 50 – 44 = 6
6 55 51 56 47 51 260 52 56 – 47 = 9
7 45 48 53 48 51 245 49 53 – 50 = 8
8 50 56 54 53 47 270 54 57 – 50 = 7
9 47 53 49 52 54 255 51 54 – 47 = 7
10 56 53 55 54 52 270 54 56 – 52 = 4
Total `sum"X"` = 510 `sum"R"` = 65

The control limits for `bar"X"` chart is

`\overset{==}{"X"} = (sumbar"X")/"Number od samples" = 510/10` = 51

`bar"R" = (sum"R")/"n" = 65/10` = 6.5

UCL = `\overset{==}{"X"} + "A"_2 bar"R"`

= 51 + 0.577(6.5)

= 51 + 3.7505

= 54.7505

= 54.75

CL = `\overset{==}{"X"}` = 51

UCL = `\overset{==}{"X"} - "A"_2 bar"R"`

= 51 – 0.577(6.5)

= 51 – 3.7505

= 47.2495

= 47.25

The control limits for Range chart is

UCL = `"D"_4bar"R"`

= 2.114(6.5)

= 13.741

CL = `bar"R"` = 6.5

LCL = `"D"_3bar"R"` = 0(6.5) = 0

shaalaa.com
Statistical Quality Control (SQC)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Applied Statistics - Miscellaneous problems [पृष्ठ २३२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 9 Applied Statistics
Miscellaneous problems | Q 8 | पृष्ठ २३२

संबंधित प्रश्‍न

Define chance cause


Define the mean chart


Construct `bar"X"` and R charts for the following data:

Sample Number  Observations 
1 32 36 42
2 28 32 40
3 39 52 28
4 50 42 31
5 42 45 34
6 50 29 21
7 44 52 35
8 22 35 44

(Given for n = 3, A2 = 1.023, D3 = 0 and D4 = 2.574)


A quality control inspector has taken ten ” samples of size four packets each from a potato chips company. The contents of the sample are given below, Calculate the control limits for mean and range chart.

Sample Number Observations
1 2 3 4
1 12.5 12.3 12.6 12.7
2 12.8 12.4 12.4 12.8
3 12.1 12.6 12.5 12.4
4 12.2 12.6 12.5 12.3
5 12.4 12.5 12.5 12.5
6 12.3 12.4 12.6 12.6
7 12.6 12.7 12.5 12.8
8 12.4 12.3 12.6 12.5
9 12.6 12.5 12.3 12.6
10 12.1 12.7 12.5 12.8

(Given for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)


In a production process, eight samples of size 4 are collected and their means and ranges are given below. Construct mean chart and range chart with control limits.

Samples number 1 2 3 4 5 6 7 8
`bar"X"` 12 13 11 12 14 13 16 15
R 2 5 4 2 3 2 4 3

Choose the correct alternative:

How many causes of variation will affect the quality of a product?


Choose the correct alternative:

The assignable causes can occur due to


Choose the correct alternative:

R is calculated using


Choose the correct alternative:

The LCL for R chart is given by


The following are the sample means and I ranges for 10 samples, each of size 5. Calculate; the control limits for the mean chart and range chart and state whether the process is in control or not.

Sample Number 1 2 3 4 5 6 7 8 9 10
Mean 5.10 4.98 5.02 4.96 4.96 5.04 4.94 4.92 4.92 4.98
Range 0.3 0.4 0.2 0.4 0.1 0.1 0.8 0.5 0.3 0.5

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×