Advertisements
Advertisements
Question
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X > 2)
Solution
P(X > 2) = `int_2^4 x/(8)`
= `(1)/(8) int_2^4 x*dx`
= `(1)/(16)[x^2]_2^4`
= `(1)/(16)[16 - 4]`
= `(12)/(16)`
= `(3)/(4)`.
APPEARS IN
RELATED QUESTIONS
Verify which of the following is p.d.f. of r.v. X:
f(x) = sin x, for 0 ≤ x ≤ `π/2`
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise"):}`
Find the probability that waiting time is between 1 and 3 minutes.
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X > 0)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)
Fill in the blank :
If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______
State whether the following is True or False :
If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12
State whether the following is True or False :
If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`
Solve the following problem :
In the following probability distribution of a r.v.X.
x | 1 | 2 | 3 | 4 | 5 |
P (x) | `(1)/(20)` | `(3)/(20)` | a | 2a | `(1)/(20)` |
Find a and obtain the c.d.f. of X.
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)
Solve the following problem :
Determine k if the p.d.f. of the r.v. is
f(x) = `{("ke"^(-thetax), "for" 0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`
If the p.d.f. of X is
f(x) = `x^2/18, - 3 < x < 3`
= 0, otherwise
Then P(X < 1) is ______.