Advertisements
Advertisements
Question
The function ‘t’ which map temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C) = F where F = `9/5` C + 32. Find, the temperature when the Celsius value is equal to the Fahrenheit value
Solution
Given t(C) = `9/5` C + 32
consider the value of C be “x”
t(C) = `9/5` C + 32
x = `9/5` x + 32
5x = 9x + 160
– 160 = 9x – 5x
– 160 = 4x
x = `(-160)/4` = – 40
The temperature when the Celsius value is equal to the fahrenheit value is – 40°
APPEARS IN
RELATED QUESTIONS
If the function f is defined by f(x) = `{{:(x + 2";", x > 1),(2";", -1 ≤ x ≤ 1),(x - 1";", -3 < x < -1):}` find the value of f(3)
If the function f is defined by f(x) = `{{:(x + 2";", x > 1),(2";", -1 ≤ x ≤ 1),(x - 1";", -3 < x < -1):}` find the value of f(− 1.5)
If the function f is defined by f(x) = `{{:(x + 2";", x > 1),(2";", -1 ≤ x ≤ 1),(x - 1";", -3 < x < -1):}` find the value of f(2) + f(– 2)
A function f: [– 5, 9] → R is defined as follow :
f(x) = `{{:(6x + 1";", -5 ≤ x < 2),(5x^2 - 1";", 2 ≤ x < 6),(3x - 4";", 6 ≤ x ≤ 9):}` Find `(2"f"(- 2) - "f"(6))/("f"(4) + "f"( -2))`
The function ‘t’ which map temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C) = F where F = `9/5` C + 32. Find, t(0)
The function ‘t’ which map temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C) = F where F = `9/5` C + 32. Find, t(28)
Multiple Choice Question :
If {(a, 8), (6, b)} represent an identity function, then the value of a and b are respectively
Write the domain of the following real function:
f(x) = `(2x + 1)/(x - 9)`
Write the domain of the following real function:
p(x) = `(-5)/(4x^2 + 1)`
Write the domain of the following real function:
h(x) = x + 6