Advertisements
Advertisements
Question
The hypotenuse of a right-angled triangle is 17cm. If the smaller side is multiplied by 5 and the larger side is doubled, the new hypotenuse will be 50 cm. Find the length of each side of the triangle.
Solution
Let hypotenuse=h, and other sides by x and y (x bigger than y). As per the question,
h = 17 , X2 + y2 = 17 X 17
⇒ x2 + y2 = 289 ..... (i)
In second scenario, sides become Sy and 2x, new h becomes 50 cm
⇒ (5y)2 + (2x)2 = 50 x 50
⇒ 25y2 + 4x2= 2500
⇒ (21y2 + 4 y2 )+ 4x2 = 2500 ..... (ii)
Putitng (i) in (ii), we get:
21y2 + 4(289) = 2500
⇒ 21y2= 1344
⇒ y2 = 64
Hence y = 8cm.
Putting this is (i), we get
⇒ x2= 289 - 64 = 225
⇒ x= 25cm
Hence, the sides are 8, 15, 17 cm.
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equation by factorization method : `x^2-5x+6=0`
A two-digit number is such that the products of its digits is 8. When 18 is subtracted from the number, the digits interchange their places. Find the number?
Solve each of the following equations by factorization:
`9/2x=5+x^2`
If 2 is a root of the equation x2 + bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =
Solve the following equation: `("a+b")^2 "x"^2 - 4 "abx" - ("a - b")^2 = 0`
Solve the following quadratic equation by factorisation:
(2x + 3) (3x - 7) = 0
In each of the following, determine whether the given values are solution of the given equation or not:
`a^2x^2 - 3abx + 2b^2 = 0; x = a/b, x = b/a`.
Solve the following equation by factorization
`(x^2 - 5x)/(2)` = 0
Solve the following equation by factorization
`x/(x - 1) + (x - 1)/x = 2(1)/(2)`
A dealer sells a toy for ₹ 24 and gains as much percent as the cost price of the toy. Find the cost price of the toy.