English

The Length of the Hypotenuse of a Right-angled Triangle Exceeds the Length of the Base by 2 Cm and Exceeds Twice the Length of the Altitude by 1 Cm. Find the Length of Each Side of the Triangle. - Mathematics

Advertisements
Advertisements

Question

The length of the hypotenuse of a right-angled triangle exceeds the length of the base by 2 cm and exceeds twice the length of the altitude by 1 cm. Find the length of each side of the triangle. 

Solution

Let the base and altitude of the right-angled triangle be x and y cm, respectively Therefore, the hypotenuse will be `(x + 2) cm`. 

∴ `(x+2)^2=y^2+x^2`                 ...............(1) 

Again, the hypotenuse exceeds twice the length of the altitude by 1 cm. 

∴`h=(2y+1)` 

⇒`x+2=2y+1` 

⇒` x=2y-1` 

Putting the value of x in (1), we get: 

`(2y-1+2)^2=y^2+(2y-1)^2` 

⇒` (2y+1)^2=y^2+4y^2-4y+1` 

⇒` 4y^2+4y+1=5y^2-4y+1` 

⇒`-y^2+8y=0` 

⇒`y^2-8y=0` 

⇒`y(y-8)=0` 

⇒`y=8 cm` 

∴ `x=16-1=15 cm` 

∴` h=16+1=17 cm` 

Thus, the base, altitude and hypotenuse of the triangle are 15 cm, 8 cm and 17 cm, respectively. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Quadratic Equations - Exercises 5

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 10 Quadratic Equations
Exercises 5 | Q 70
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×